问题
解答题
已知公差大于零的等差数列{an}的前n项和Sn,且满足:a2•a4=65,a1+a5=18. (1)若1<i<21,a1,ai,a21是某等比数列的连续三项,求i的值; (2)设bn=
|
答案
(1)由题意,∵a2•a4=65,a1+a5=18.
∴(a1+d)(a1+3d)=65,a1+a1+4d=18.
∵d>0,∴d=4,a1=1
∴an=4n-3,
∵a1,ai,a21是某等比数列的连续三项,
∴a1a21=ai2
∴1•81=(4i-3)2
∵1<i<21,∴i=3;
(2)由(1)可得Sn=n•1+
•4=2n2-nn(n-1) 2
∴bn=
=n (2n+1)Sn
=1 (2n-1)(2n+1)
(1 2
-1 2n-1
)1 2n+1
∴b1+b2+…+bn=
(1-1 2
+1 3
-1 3
+…+1 5
-1 2n-1
)=1 2n+1
=n 2n+1
-1 2
<1 2(2n+1) 1 2
∵b1+b2+…+bn<m对于任意的正整数n均成立,
∴m=1 2