问题 选择题
已知椭圆的中心在原点,离心率e=
1
3
,且它的一个焦点与抛物线y2=8x的焦点重合,则此椭圆方程为(  )
A.
x2
32
+
y2
36
=1
B.
x2
36
+
y2
32
=1
C.
x2
36
+
y2
16
=1
D.
x2
16
+
y2
36
=1
答案

抛物线y2=8x的焦点为(2,0),

∴椭圆的c=2,

由离心率e=

1
3
c
a
=
1
3

可得a=6,∴b2=a2-c2=36-4=32,

故椭圆的标准方程为

x2
36
+
y2
32
=1,

故选B.

多项选择题
判断题