问题
解答题
抛物线y2=4x上有两个定点A、B分别在对称轴的上、下两侧,F为抛物线的焦点,并且|FA|=2,|FB|=5,在抛物线AOB这段曲线上求一点P,使△PAB的面积最大,并求这个最大面积.
答案
由已知得F(1,0),点A在x轴上方,
设A(x1,y1),y1>0,
由|FA|=2,
得x1+1=2,x1=1,
所以A(1,2),
同理B(4,-4),
所以直线AB的方程为2x+y-4=0.
设在抛物线AOB这段曲线上任一点P(x0,y0),
且0≤x0≤4,-4≤y0≤2.
则点P到直线AB的距离d=
=|2x0+y0-4| 1+4
=|2×
+y0-4|y02 4 5
,|
(y0 +1)2-1 2
|9 2 5
所以当y0=-1时,d取最大值
,9 5 10
又|AB|=3
,5
所以△PAB的面积最大值为S=
×31 2
×5
=9 5 10
.27 4
此时P点坐标为(
,-1).1 4