椭圆
(1)如果点A在圆x2+y2=c2(c为椭圆的半焦距)上,且|F1A|=c,求椭圆的离心率; (2)若函数y=
|
(1)∵点A在圆x2+y2=c2上,
∴△AF1F2为一直角三角形,
∵|F1A|=c,|F1F2|=2c,∴|F2A|=
=|F1F2|2-|AF1|2
c3
由椭圆的定义知:|AF1|+|AF2|=2a,∴c+2
c=2a3
∴e=
=c a
=2 1+ 3
-13
(2)∵函数y=
+logmx的图象恒过点(1,2
)2
∴a=
,b=1,c=1,2
点F1(-1,0),F2(1,0),
①若AB⊥x轴,则A(-1,
),B(-1,-2 2
),2 2
∴
=(-2,F2A
),2 2
=(-2,-F2B
),2 2
•F2A
=4-F2B
=1 2 7 2
②若AB与x轴不垂直,设直线AB的斜率为k,则AB的方程为y=k(x+1)
由
消去y得(1+2k2)x2+4k2x+2(k2-1)=0(*)y=k(x+1) x2+2y2-2=0
∵△=8k2+8>0,∴方程(*)有两个不同的实根.
设点A(x1,y1),B(x2,y2),
则x1,x2是方程(*)的两个根x1+x2=-
,x1x2=4k2 1+2k2 2(k2-1) 1+2k2
=(x1-1,y1),F2A
=(x2-1,y2),F2B
•F2A
=(x1-1)(x2-1)+y1y2=(1+k2)x1x2+(k2-1)(x1+x2)+1+k2F2B
=(1+k2)
+(k2-1)(-2(k2-1) 1+2k2
)+1+k2=4k2 1+2k2
=7k2-1 1+2k2
-7 2 9 2(1+2k2)
∵1+2k2≥1,∴0<
≤1,0<1 1+2k2
≤9 2(1+2k2) 9 2
-1≤
•F2A
=F2B
-7 2
<9 2(1+2k2)
,7 2
由①②知-1≤
•F2A
<F2B
.7 2