问题
解答题
我区A,B两村盛产荔枝,A村有荔枝200吨,B村有荔枝300吨.现将这些荔枝运到C,D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C,D两处的费用分别为每吨20元和25元,从B村运往C,D两处的费用分别为每吨15元和18元.设从A村运往C仓库的荔枝重量为x吨,A,B两村运往两仓库的荔枝运输费用分别为yA元和yB元. (1)请填写下表,并求出yA,yB与x之间的函数关系式;
(3)考虑到B村的经济承受能力,B村的荔枝运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值. |
答案
(1)A,B两村运输荔枝情况如表,
收收地地运运地地 | C | D | 总计 |
A | x吨 | 200-x | 200吨 |
B | 240-x | x+60 | 300吨 |
总计 | 240吨 | 260吨 | 500吨 |
yB=15(240-x)+18(x+60)=3x+4680(0≤x≤240);
(2)①当yA=yB,即5000-5x=3x+4680,
解得x=40,
当x=40,两村的运费一样多,
②当yA>yB,即5000-5x>3x+4680,
解得x<40,
当0<x<40时,A村运费较高,
③当yA<yB,即5000-5x<3x+4680,
解得x>40,
当40<x≤200时,B村运费较高;
(3)B村的荔枝运费不得超过4830元,
yB=3x+4680≤4830,
解得x≤50,
两村运费之和为yA+yB=5000-5x+3x+4680=9680-2x,
要使两村运费之和最小,所以x的值取最大时,运费之和最小,
故当x=50时,最小费用是9680-2×50=9580(元).