问题 解答题
已知
OP
=(2,1)
OA
=(1,7)
OB=(5,1)
,设C是直线OP上的一点,其中O为坐标原点.
(1)求使
CA
CB
取得最小值时向量
OC
的坐标;
(2)当点C满足(1)时,求cos∠ACB.
答案

(1)∵点C在直线OP上,∴可设

OC
=t
OP
=(2t,t).

OA
=(1,7),
OC
=(2t,t),
OB
=(5,1),

CA
=
OA
-
OC
=(1-2t,7-t),
CB
=
OB
-
OC
=(5-2t,1-t).

CA
CB
=(1-2t)(5-2t)+(7-t)(1+t)=5t2-20t+12=5(t-2)2-8.

∴当t=2时,

CA
CB
取得最小值-8,此时,
OC
=(4,2).

(2)当

OC
=(4,2)时,
CA
=(-3,5),
CB
=(1,-1),

∴cos∠ACB=

CA
CB
|
CA
||
CB
|
=-
4
17
17

单项选择题 A1型题
单项选择题