问题
解答题
已知
(1)求使
(2)当点C满足(1)时,求cos∠ACB. |
答案
(1)∵点C在直线OP上,∴可设
=tOC
=(2t,t).OP
∵
=(1,7),OA
=(2t,t),OC
=(5,1),OB
∴
=CA
-OA
=(1-2t,7-t),OC
=CB
-OB
=(5-2t,1-t).OC
∴
•CA
=(1-2t)(5-2t)+(7-t)(1+t)=5t2-20t+12=5(t-2)2-8.CB
∴当t=2时,
•CA
取得最小值-8,此时,CB
=(4,2).OC
(2)当
=(4,2)时,OC
=(-3,5),CA
=(1,-1),CB
∴cos∠ACB=
=-
•CA CB |
||CA
|CB 4 17
.17