问题 解答题
已知双曲线C的渐近线方程为y=±
3
x
,右焦点F(c,0)到渐近线的距离为
3

(1)求双曲线C的方程;
(2)过F作斜率为k的直线l交双曲线于A、B两点,线段AB的中垂线交x轴于D,求证:
|AB|
|FD|
为定值.
答案

(1)设双曲线方程为3x2-y2=λ(λ>0)…(2分)

由题知c=2,∴

λ
3
+λ=4,∴λ=3…(4分)

∴双曲线方程为:x2-

y2
3
=1…(5分)

(2)设直线l的方程为y=k(x-2)代入x2-

y2
3
=1

整理得(3-k2)x2+4k2x-4k2-3=0…(6分)

设A(x1,y1),B(x2,y2),AB的中点P(x0,y0

x0=-

2k2
3-k2
,代入l得:y0=
-6k
3-k2
…(7分)

|AB|=

1+k2
|x1-x2|=…=
6(k2+1)
|3-k2|
…(8分)

AB的垂直平分线方程为y=-

1
k
(x+
2k2
3-k2
)-
6k
3-k2
…(9分)

令y=0得xD=

-8k2
3-k2
…(10分)

|FD|=|

-8k2
3-k2
-2|=|
-6(1+k2)
3-k2
|=
6(1+k2)
|3-k2|
…(11分)

|AB|
|FD|
=1为定值.…(12分)

填空题
单项选择题