问题
解答题
若给定椭圆C:ax2+by2=1(a>0,b>0,a≠b)和点N(x0,y0),则称直线l:ax0x+by0y=1为椭圆C的“伴随直线”. (1)若N(x0,y0)在椭圆C上,判断椭圆C与它的“伴随直线”的位置关系(当直线与椭圆的交点个数为0个、1个、2个时,分别称直线与椭圆相离、相切、相交),并说明理由; (2)命题:“若点N(x0,y0)在椭圆C的外部,则直线l与椭圆C必相交.”写出这个命题的逆命题,判断此逆命题的真假,说明理由; (3)若N(x0,y0)在椭圆C的内部,过N点任意作一条直线,交椭圆C于A、B,交l于M点(异于A、B),设
|
答案
(1)
⇒(aby02+a2x02)x2-2ax0x+1-by02=0ax2+by2=1 ax0x+by0y=1
即ax2-2ax0x+ax02=0
∴△=4a2x02-4a2x02=0
∴l与椭圆C相切.
(2)逆命题:若直线l:ax0x+by0y=1与椭圆C相交,则点N(x0,y0)在椭圆C的外部.
是真命题.联立方程得(aby02+a2x02)x2-2ax0x+1-by02=0
则△=4a2x02-4a(by02+ax02)(1-by02)>0
∴ax02-by02+b2y04-ax02+abx02y02>0
∴by02+ax02>1
∴N(x0,y0)在椭圆C的外部.
(3)同理可得此时l与椭圆相离,设M(x1,y1),A(x,y)
则
代入椭圆C:ax2+by2=1,利用M在l上,x= x1+λ1x0 1+λ1 y= y1+λ1y0 1+λ1
即ax0x1+by0y1=1,整理得(ax02+by02-1)λ12+ax12+by12-1=0
同理得关于λ2的方程,类似.
即λ1、λ2是(ax02+by02-1)λ2+ax12+by12-1=0的两根
∴λ1+λ2=0.