问题
填空题
如果抛物线y=x2-2xsinθ+1的顶点在椭圆x2+4y2=1上,则这样的抛物线共有______条.
答案
抛物线y=x2-2xsinθ+1可得顶点(sinθ,cos2θ)
代入椭圆方程得:
sin2θ+4cos4θ=1
4cos4θ=cos2θ
cos2θ=0或cos2θ=1 4
对应的sinθ有4个不同的值,
所以,这样的抛物线共有4条
故答案为:4
如果抛物线y=x2-2xsinθ+1的顶点在椭圆x2+4y2=1上,则这样的抛物线共有______条.
抛物线y=x2-2xsinθ+1可得顶点(sinθ,cos2θ)
代入椭圆方程得:
sin2θ+4cos4θ=1
4cos4θ=cos2θ
cos2θ=0或cos2θ=1 4
对应的sinθ有4个不同的值,
所以,这样的抛物线共有4条
故答案为:4