问题 解答题
为建设环境优美、文明和谐的新农村,某村村委会决定在村道两旁种植A,B两种树木,需要购买这两种树苗1000棵.A,B两种树苗的相关信息如表:
单价(元/棵)成活率植树费(元/棵)
A2090%5
B3095%5
设购买A种树苗x棵,绿化村道的总费用为y元,解答下列问题:
(1)写出y(元)与x(棵)之间的函数关系式;
(2)若这批树苗种植后成活了925棵,则绿化村道的总费用需要多少元?
(3)若绿化村道的总费用不超过31000元,则最多可购买B种树苗多少棵?
答案

(1)设购买A种树苗x棵,则购买B种树苗棵,由题意,得

y=(20+5)x+(30+5)=-10x+35000;

(2)由题意,可得0.90x+0.95=925,

解得x=500.

当x=500时,y=-10×500+35000=30000,

即绿化村道的总费用需要30000元;

(3)由(1)知购买A种树苗x棵,B种树苗棵时,总费用y=-10x+35000,

由题意,得-10x+35000≤31000,

解得x≥400,

所以1000-x≤600,

故最多可购买B种树苗600棵.

解答题
多项选择题