问题 选择题
已知A,B是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的公共顶点.过坐标原点O作一条射线与椭圆、双曲线分别交于M,N两点,直线MA,MB,NA,NB的斜率分别记为k1,k2,k3,k4,则下列关系正确的是(  )
A.k1+k2=k3+k4B.k1+k3=k2+k4
C.k1+k2=-(k3+k4D.k1+k3=-(k2+k4
答案

设M(x,y),则k1+k2=

y
x+a
+
y
x-a
=
2xy
x2-a2

x2
a2
+
y2
b2
=1(a>b>0),∴
y
x2-a2
=-
b2
a2y
,∴k1+k2=-
2b2x
a2y

设N(x′,y′),则k3+k4=

y′
x′+a
+
y′
x′-a
=
2x′y′
x2-a2

x′2
a2
-
y′2
b2
=1(a>0,b>0),∴
y′
x2-a2
=
b2
a2y′
,∴k3+k4=
2b2x′
a2y′

∵O,M,N共线

y
x
=
y′
x′

∴k1+k2=-(k3+k4

故选C.

填空题
单项选择题