问题
填空题
一动圆过点A(0,1),圆心在抛物线x2=4y上,且恒与定直线l相切,则直线l的方程为______.
答案
根据抛物线方程可知抛物线焦点为(0,1),
∴定点A为抛物线的焦点,
要使圆过点A(0,1)且与定直线l相切,需圆心到定点的距离与定直线的距离相等,
根据抛物线的定义可知,定直线正是抛物线的准线,准线方程为y=-1
故答案为:y=-1.
一动圆过点A(0,1),圆心在抛物线x2=4y上,且恒与定直线l相切,则直线l的方程为______.
根据抛物线方程可知抛物线焦点为(0,1),
∴定点A为抛物线的焦点,
要使圆过点A(0,1)且与定直线l相切,需圆心到定点的距离与定直线的距离相等,
根据抛物线的定义可知,定直线正是抛物线的准线,准线方程为y=-1
故答案为:y=-1.