问题 选择题
已知抛物线y2=2px的准线和双曲线
x2
p2
-
y2
12
=1
的左准线重合,则抛物线被双曲线的一条渐近线截得的弦长为(  )
A.2B.
8
3
C.4D.
4
3
答案

抛物线y2=2px的准线为:x=-

p
2
;双曲线
x2
p2
-
y2
12
=1
的左准线为:x=-
p2
p2+12
,因为抛物线y2=2px的准线和双曲线
x2
p2
-
y2
12
=1
的左准线重合,-
p
2
= -
p2
p2+12
,解得p=2;抛物线方程为:y2=4x和双曲线
x2
4
-
y2
12
=1

它的渐近线为:y=±

3
x.所以
y2=4x
y=
3
x
,所以3x2=4x,可得交点坐标(0,0),(
4
3
4
3
3
),

所求弦长为:

(
4
3
)
2
+(
4
3
3
)
2
=
8
3

故选B.

单项选择题 A1/A2型题
多项选择题 案例分析题