问题
填空题
直线y=kx-2与椭圆x2+4y2=80相交于不同的两点P、Q,若PQ的中点横坐标为2,则直线的斜率等于______.
答案
设P(x1,y1),Q(x2,y2),
由直线y=kx-2与椭圆x2+4y2=80联立得:(4k2+1)x2-16kx-64=0
因为直线y=kx-2与椭圆x2+4y2=80相交于不同的两点P、Q,所以△=(-16k)2-4×(4k2+1)×(-64)>0,
即1280k2+256>0,此式显然成立.
把P,Q点的坐标待入椭圆方程得:x12+4y12=80①
x22+4y22=80②
①-②得:
=-y1-y2 x1-x2
,所以x1+x2 4(y1+y2)
=-y1-y2 x1-x2
,x1+x2 4[k(x1+x2)-4]
又因为PQ的中点横坐标为2,所以x1+x2=4,
所以k=-
,即(2k-1)2=0,解得k=4 4(4k-4)
.1 2
故答案为
.1 2