问题
解答题
等比数列{an}的各项均为正数,且a3a6=8,则log2a1+log2a2+…+log2a8=______.
答案
由等比数列的性质:a1a8=a2a7=a3a6=a4a5=8,
而log2a1+log2a2+…+log2a8=log2a1a2…a8=log284=12
故答案为:12.
等比数列{an}的各项均为正数,且a3a6=8,则log2a1+log2a2+…+log2a8=______.
由等比数列的性质:a1a8=a2a7=a3a6=a4a5=8,
而log2a1+log2a2+…+log2a8=log2a1a2…a8=log284=12
故答案为:12.