问题
解答题
在等比数列{an}中,a1最小,且a1+an=66,a2•an-1=128,前n项和Sn=126,(1).求公比q;(2).求n.
答案
(1)∵{an}成等比数列,∴a1•an=a2•an-1=128,
∵a1+an=66
∴a1、an是方程x2-66x+128=0的两个实数根,
解方程x2-66x+128=0,得:x1=2,x2=64;
又a1最小,∴a1=2,an=64;
又Sn=126,
∴由Sn=
从而得:a1-anq 1-q
=126,即q=2;2-64q 1-q
(2)由an=a1qn-1得:2×2n-1=64,
∴n=6.