问题 填空题
在椭圆
x2
16
+
y2
4
=1内以点P(-2,1)为中点的弦所在的直线方程为______.
答案

设以点P(-2,1)为中点的弦所在的直线与椭圆

x2
16
+
y2
4
=1交于A(x1,y1),B(x2,y2),

∵点P(-2,1)是线段AB的中点,

x1+x2=-4
y1+y2=2

把A(x1,y1),B(x2,y2)代入椭圆x2+4y2=16,

x12+4y12=16   ①
x22+4y22=16   ②

①-②得(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,

∴-4(x1-x2)+8(y1-y2)=0,

k=

y1-y2
x1-x2
=
1
2

∴以点P(-2,1)为中点的弦所在的直线方程为y-1=

1
2
(x+2),

整理,得x-2y+4=0.

故答案为:x-2y+4=0.

填空题
单项选择题 B1型题