问题
填空题
已知Rt△ABC中,∠C=90º,AC=5cm,BC=12cm,则△ABC的内切圆半径为 ▲ cm.
答案
2
设AB、BC、AC与⊙O的切点分别为D、F、E;易证得四边形OECF是正方形;那么根据切线长定理可得:CE=CF=0.5(AC+BC-AB),由此可求出r的长.
解答:解:如图;
在Rt△ABC,∠C=90°,AC=5,BC=12;
根据勾股定理AB==13;
四边形OECF中,OE=OF,∠OEC=∠OFC=∠C=90°;
∴四边形OECF是正方形;
由切线长定理,得:AD=AE,BD=BF,CE=CF;
∴CE=CF=0.5(AC+BC-AB);
即:r=0.5(5+12-13)=2.
故答案为:2.