问题
解答题
设f(x)=x2,g(x)=8x,数列{an}(n∈N*)满足a1=2,(an+1-an)•g(an-1)+f(an-1)=0,记bn=
(Ⅱ)当n为何值时,bn取最大值,并求此最大值;(Ⅲ)求数列{bn}的前n项和Sn. |
答案
(Ⅰ)由已知,得(an+1-an)•8(an-1)+(an-1)2=0.
即(an-1)(8an+1-7an-1)=0.
∵a1=2≠1,∴a2≠1,同理a3≠1,…,an≠1.
∴8an+1=7an+1.
即8(an+1-1)=7(an-1),
∴数列{an-1}是以a1-1=1为首项,
为公比的等比数列. 7 8
(Ⅱ)由(1),得an-1=(
)n-1.7 8
∴bn=(n+1)•(
)n. 7 8
则bn+1=(n+2)•(
)n+1.7 8
∵
=bn+1 bn
•n+2 n+1
,设7 8
≥1,则n≤6.bn+1 bn
因此,当n<6时,bn<bn+1;当n=6时,b6=b7,当n>6时,bn>bn+1.
∴当n=6或7时,bn取得最大值.
(Ⅲ)Sn=2•
+3•(7 8
)2+4•(7 8
)3+…+n•(7 8
)n-1+(n+1)•(7 8
)n7 8
•Sn=2•(7 8
)2+3•(7 8
)3+4•(7 8
)4+…+n•(7 8
)n+(n+1)•(7 8
)n+17 8
相减得:
•Sn=2•1 8
+(7 8
)2+(7 8
)3+…+(7 8
)n-(n+1)•(7 8
)n+1=7 8
+7 8
×8×[1-(7 8
)n]-(n+1)•(7 8
)n+17 8
=
-(n+9)•(63 8
)n+17 8
∴Sn=63-8(n+9)•(
)n+1.7 8