问题
解答题
已知数列{an}是公差不等于0的等差数列,a1=1,且a1,a2,a4成等比数列
(1)求通项an;
(2)令bn=an+2 an,求数列{bn}的前n项和Sn.
答案
(1)数列{an}是公差不等于0的等差数列,设其公差为d,
∵a1=1,且a1,a2,a4成等比数列,
∴a22=a1•a4,即(1+d)2=1×(1+3d),
∴d2=d,又d≠0,
∴d=1,
∴an=1+(n-1)×1=n.
(2)∵bn=an+2 an=n+2n,
∴Sn=b1+b2+…+bn
=(1+21)+(2+22)+…+(n+2n)
=(1+2+…+n)+(21+22+…+2n)
=
+n(1+n) 2 2(1-2n) 1-2
=2n+1+
-2.n(1+n) 2