问题
解答题
已知数列an的相邻两项an,an+1满足an+an+1=2n,且a1=1 (1)求证an-
(2)求数列{an}的通项公式an及前n项和Sn. |
答案
(1)由an+an+1=2n,
得an+1-
×2n+1=-(an-1 3
×2n),1 3
故数列{an-
×2n}是首项为a1-1 3
=2 3
,公比为-1的等比数列.1 3
(2)由(1)知an-
×2n=1 3
×(-1)n-1,1 3
即an=
[2n-(-1)n],1 3
Sn=a1+a2+a3+…+an
=
{(2+22+23+…+2n)-[-(-1)+(-1)2+…+(-1)n]}1 3
=
(2n+1-2-1 3
)(-1)n-1 2
=
•2n+1-1 3
(-1)n-1 6
.1 2