问题
解答题
已知抛物线C:y=x2+4x+
(1)若抛物线C在点M的法线的斜率为-
(2)设P(-2,4)为C对称轴上的一点,在C上一定存在点,使得C在该点的法线通过点P.试求出这些点,以及C在这些点的法线方程. |
答案
(1)函数y=x2+4x+
的导数y′=2x+4,点(x0,y0)处切线的斜率k0=2x0+4、7 2
∵过点(x0,y0)的法线斜率为-
,∴-1 2
(2x0+4)=-1,解得x0=-1,y0=1 2
.故点M的坐标为(-1,1 2
).1 2
2设M(x0,y0)3为C上一点,
(2)若x0=-2,则C上点M(-2,-
)处的切线斜率k=0,1 2
过点M(-2,-
)的法线方程为x=-2,法线过点P(-2,4);1 2
若x0≠-2,则过点M(x0,y0)的法线方程为:y-y0=-
(x-x0).1 2x0+4
若法线过点P(-2,4),则4-y0=-
(-2-x0),1 2x0+4
解得x0=0,y0=
,得x+4y-14=0,或者x0=-4,y0=7 2
,得x-4y+18=0.7 2
综上,在C上有点(0,
),(-4,7 2
)及(-2,-7 2
),1 2
在该点的法线通过点P,法线方程分别为x+4y-14=0,x-4y+18=0,x=-2