问题
解答题
已知公差不为0的等差数列{an}的首项a1(a1∈R),且
(Ⅰ)求数列{an}的通项公式; (Ⅱ)对n∈N*,试比较
|
答案
(Ⅰ)设等差数列{an}的公差为d,由题意可知(
)2=1 a2
×1 a1
,1 a4
即(a1+d)2=a1(a1+3d),从而a1d=d2,
因为d≠0,所以d=a1,
故an=nd=na1;
(Ⅱ)记Tn=
+1 a2
+…+1 a22
,由a2=2a1,1 a2n
所以Tn=
=
(1-1 a2
)1 a2n 1- 1 a2
=
(1-1 2a1
)1 (2a1)n 1- 1 2a1
,1- 1 (2a1)n 2a1-1
从而,当a1>1时,Tn<
;当a1<1时,Tn>1 a1
.1 a1