问题
填空题
已知正项等比数列{an}满足:a7=a6+2a5若存在两项am、an使得
|
答案
设等比数列{an}的首项为a1,公比为q,
∵a7=a6+2a5,则a1•q6=a1•q5+2a1•q4
即q2-q-2=0,解得q=2或q=-1(舍去)
若
=4a1,aman
则m+n=6
则6(
+1 m
)=(m+n)(4 n
+1 m
)=5+(4 n
+n m
)≥5+4=94m n
则
+1 m
≥4 n
=9 6 3 2
故答案为3 2