问题 解答题
已知椭圆
x2
2
+y2=1

(1)求斜率为2的平行弦的中点轨迹方程;
(2)过A(2,1)的直线l与椭圆相交,求l被截得的弦的中点轨迹方程;
(3)过点P(
1
2
1
2
)且被P点平分的弦所在的直线方程.
答案

(1)设弦的两端点分别为M(x1,y1),N(x2,y2) 的中点为R(x,y),

x12+2y12=2x22+2y22=2

两式相减并整理可得

x1-x2
y1-y2
=
2(y1+y2)
x1+x2
=-
x
2y
,①

y1-y2
x1-x2
=2代入式①,得所求的轨迹方程为x+4y=0(椭圆内部分).

(2)可设直线方程为y-1=k(x-2)(k≠0,否则与椭圆相切),

设两交点分别为(x3,y3),(x4,y4),

x3 2
2
+y32=1,
x42
2
+y42=1
,两式相减得

(x3+x4)(x3-x4)
2
+ (y3 +y4)(y3-y4)=0,

显然x3≠x4(两点不重合),

x3+x4
2
+
(y3+y4)(y3-y4)
x3-x4
=0

令中点坐标为(x,y),

则x+2y•

y3-y4
x3-x4
=0,

又(x,y)在直线上,所以

y-1
x-2
=k,

显然

y3-y4
x3-x4
=k,

故x+2y•k=x+2y

y-1
x-2
=0,即所求轨迹方程为x2+2y2-2x-2y=0(夹在椭圆内的部分).

(3)设过点P(

1
2
1
2
)的直线与
x2
2
+y2=1
交于E(x5,y5),F(x6,y6),

∵P(

1
2
1
2
)是EF的中点,

∴x5+x6=1,y5+y6=1,

把E(x5,y5),F(x6,y6)代入与

x2
2
+y2=1,

x52+2y52=2
x62+2y62=2

∴(x5+x6)(x5-x6)+2(y5+y6)(y5-y6)=0,

∴(x5-x6)+2(y5-y6)=0,

∴k=

y5-y6
x5-x6
=-
1
2

∴过点P(

1
2
1
2
)且被P点平分的弦所在的直线方程:y-
1
2
=-
1
2
(x-
1
2
)

即2x+4y-3=0.

实验题
单项选择题