问题 解答题

在数1和2之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积记为An,令an=log2An,n∈N.

(1)求数列{An}的前n项和Sn

(2)求Tn=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2

答案

(1)根据题意,n+2个数构成递增的等比数列,

设为b1,b2,b3,…,bn+2,其中b1=1,bn+2=2,

可得An=b1•b2•…•bn+1•bn+2,…①;An=bn+2•bn+1•…•b2•b1,…②

由等比数列的性质,得b1•bn+2=b2•bn+1=b3•bn=…=bn+2•b1=2,

∴①×②,得

A2n
=(b1bn+2)•(b2bn+1)•…•(bn+1b2)•(bn+2b1)=2n+2

∵An>0,∴An=2

n+2
2

因此,可得

An+1
An
=
2
n+3
2
2
n+2
2
=
2
(常数),

∴数列{An}是首项为A1=2

2
,公比为
2
的等比数列.

∴数列{An}的前n项和Sn=

2
2
[1-(
2
)
n
]
1-
2
=(4+2
2
)[(
2
)
n
-1]

(2)由(1)得an=log2An=log22

n+2
2
=
n+2
2

tan1=tan[(n+1)-1]=

tan(n+1)-tann
1+tan(n+1)tann

tan(n+1)tann=

tan(n+1)-tann
tan1
-1,n∈N*

从而tana2n•tana2n+2=tan(n+1)tan(n+2)=

tan(n+2)-tan(n+1)
tan1
-1,n∈N*

Tn=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2

=tan2•tan3+tan3•tan4+…+tan(n+1)tan(n+2)

=(
tan3-tan2
tan1
-1)+(
tan4-tan3
tan1
-1)+…+(
tan(n+2)-tan(n+1)
tan1
-1)

=
tan(n+2)-tan2
tan1
-n.

即Tn=tana2•tana4+tana4•tana6+…+tana2n•tana2n+2

=
tan(n+2)-tan2
tan1
-n

单项选择题
多项选择题