问题
选择题
已知F是抛物线C:y2=4x的焦点,直线l:y=k(x+1)与抛物线C交于A,B两点,记直线FA,FB的斜率分别为k1,k2,则k1+k2的值等于( )
A.-2
B.-1
C.0
D.1
答案
由
,得k2x2+(2k2-4)x+k2=0(k≠0),y=k(x+1) y2=4x
设A(x1,y1),B(x2,y2),
则x1+x2=-2+
,x1x2=1,4 k2
又F(1,0),
所以k1+k2=
+y1 x1-1
=y2 x2-1
+k(x1+1) x1-1
=k(x2+1) x2-1
=k(2x1x2-2) (x1-1)(x2-1)
=0,k(2-2) (x1-1)(x2-1)
故选C.