问题 解答题
已知抛物线x2=2py(p>0)的焦点为F,过F的直线交抛物线于A、B的两点,过A、B两点分别作抛物线的切线,设其交点为M.
(Ⅰ)设A(x1,y1),B(x2,y2),试用x1,x2表示点M的坐标.
(Ⅱ)
FM
AB
是否为定值,如果是,请求出定值,如果不是,请说明理由.
(III)设△ABM的面积为S,试确定S的最小值.
答案

由x2=2py,得y=

x2
2p
,故y′=
x
p
,切线AM的方程为y-y1=
x1
p
(x-x1)
,即y=
x1
p
x-
x1 2
2p
①,

切线BM的方程为:y-y2=

x2
p
(x-x2)即y=
x2
p
x-
x2 2
2p

由①②联立解得M的坐标是(

x1+x2
2
x1x2
2p

(2)F(0,

p
2
),
FM
=(
x1+x2
2
x1x2
2p
-
p
2
),
AB
=(x2-x1,y2-y1)=(x2-x1
x2 2-x1 2
2p
),

FM
AB
=
x2 2-x1 2
2
+(
x2x1
2p
-
p
2
x2 2-x1 2
2p

由A,B,F三点共线得kAF=kBF

y1-
p
2
x1
=
y2-
p
2
x2
,将y1=
x1 2
2p
y2=
x2 2
2p
代入整理得x1x2=-p2④,

把④代入③得

FM
AB
=0

(3)由(2)知FM⊥AB,故△ABM的面积为S=

1
2
AB×FM=
1
2
y1+
p
2
+y2+
p
2
(
x1+x2
2
)
2
+(
x2x1
2p
-
p
2
)
2
)=
1
2
x1 2+x2 2
2p
+p)
x1 2+x2 2
4
+
p2
2

∵x12+x22≥2|x1x2|

∴x12+x22≥2p2(当且仅当x1=-x2时等号成立)

∴S的最小值是

1
2
p2

单项选择题
判断题