问题
填空题
若命题“∃x∈R,使得x2+(a-1)x+1<0”是真命题,则实数a的取值范围是______.
答案
∵“∃x∈R,使得x2+(a-1)x+1<0
∴x2+(a-1)x+1=0有两个不等实根
∴△=(a-1)2-4>0
∴a<-1或a>3
故答案为:(-∞,-1)∪(3,+∞)
若命题“∃x∈R,使得x2+(a-1)x+1<0”是真命题,则实数a的取值范围是______.
∵“∃x∈R,使得x2+(a-1)x+1<0
∴x2+(a-1)x+1=0有两个不等实根
∴△=(a-1)2-4>0
∴a<-1或a>3
故答案为:(-∞,-1)∪(3,+∞)