已知抛物线C:y2=4x,F是抛物线的焦点,设A(x1,y1),B(x2,y2)是C上异于 原点O的两个不重合点,OA丄OB,且AB与x轴交于点T (1)求x1x2的值; (2)求T的坐标; (3)当点A在C上运动时,动点R满足:
|
(1)由OA丄OB,可得x1x2+y1y2=0
∵y12=4x1,y22=4x2,∴16x1x2=(y1y2)2
代入上式得16y1y2+(y1y2)2=0
∵y1y2≠0,∴y1y2=-16,∴x1x2=16;
(2)设T(t,0),当x1≠x2时,A,B,T三点共线,∴
=y1 x1-t y2 x2-t
∴(y2-y1)t=y2x1-y1x2=-4(y1-y2)
∵y1≠y2,∴t=4
当x1=x2时,∵OA⊥OB,此时△AOB为等腰直角三角形,x1=x2=t,直线OA的方程式为y=x
与抛物线联立,解得t=x1=4
∴T的坐标是(4,0);
(3)设R(x,y),由F(1,0),
+FA
=FB
,得(x1-1,y1)+(x2-1,y2)=(x-1,y)FR
即x1+x2=x+1 y1+y2=y
∵y12=4x1,y22=4x2,∴两式相减可得(y1-y2)(y1+y2)=4(x1-x2)
当x1≠x2时,y•
=4y1-y2 x1-x2
∵AB的中点M(
,x+1 2
),点T(4,0)都在直线AB上,y 2
∴kAB=kTM,即
=y1-y2 x1-x2
代入上式得y•y 2
-4x+1 2
=4y 2
-4x+1 2
化简可得y2=4x-28
当x1=x2时,点R(7,0)符合上式
综上可知点R的轨迹方程是y2=4x-28.