问题
填空题
直线l与椭圆
|
答案
∵椭圆
+x2 a2
=1(a>b>0)的离心率是y2 b2
,2 2
∴a=2k,c=
k,b=2
k,2
设椭圆的两个焦点横坐标是-c,c,
则M(-c,-
),N(c,b2 a
),或M(-c,b2 a
),N(c,-b2 a
),b2 a
当M(-c,-
),N(c,b2 a
)时,b2 a
直线l的斜率k=
=2b2 a 2c
=b2 ac
=2k2 2
k22
;2 2
当M(-c,
),N(c,-b2 a
)时,b2 a
直线l的斜率k=-
=-2b2 a 2c
=-b2 ac
=-2k2 2
k22
.2 2
故答案为:±
.2 2