问题 解答题
设数列{an}满足:a1=1,an+1=
1
16
(1+4an+
1+24an
)(n∈N*)

(1)求a2,a3;  
(2)令bn=
1+24an
,求数列{bn}的通项公式;
(3)已知f(n)=6an+1-3an,求证:f(1)•f(2)…f(n)>
1
2
答案

(1)∵数列{an}满足:a1=1,an+1=

1
16
(1+4an+
1+24an
)(n∈N*),

∴a2=

1
16
(1+4a1+
1+24a1
)=
5
8

a3=

1
16
(1+4a2+
1+24a2
)=
1
16
(1+4×
5
8
+
1+24×
5
8
)
=
15
32

(2)∵bn=

1+24an
,∴an
bn2-1
24
,代入 an+1=
1
16
(1+4an+
1+24an
)(n∈N*)
 得

bn+12-1
24
=
1
16
(1+4× 
bn2-1
24
bn)
,化简可得 4bn+12=(bn+3)2,即 2bn+1=bn+3.

∴2(bn+1-3)=bn-3,∴{bn-3}是以2为首项,以

1
2
为公比的等比数列,

∴bn-3=2(

1
2
)n-1,∴bn=(
1
2
)
n-2
+3.

(3)证明:∵已知 an=

bn2-1
24
=
(
1
4
)
n-2
+9 + 6×(
1
2
)
n-2
-1
24
=
2
3
×(
1
4
)
n
+(
1
2
)
n
+
1
3

故 f(n)=6an+1-3an =6[

2
3
×(
1
4
)
n+1
+(
1
2
)
n+1
+
1
3
]-3(
2
3
×(
1
4
)
n
+(
1
2
)
n
+
1
3
)=1-
1
4n
 

=(1-

1
2n
)(1+
1
2n
).

当n≥2时,有(1+

1
2n-1
)•(1-
1
2n
)
=1-
1
2n
+
1
2n-1
-
1
22n-1
=1+
2n-1-1
22n-1
>1.

∴f(1)•f(2)…•f(n)=(1-

1
2
)(1+
1
2
)•(1-
1
4
)(1+
1
4
)…(1-
1
2n
)(1+
1
2n

>(1-

1
2
)(1+
1
2n
)=
1
2
+
1
2n+1
1
2

故要证的不等式 f(1)•f(2)…f(n)>

1
2
成立.

单项选择题
选择题