问题 解答题
已知数列{an}的前n项和为Sn,满足Sn+2n=2an
(1)证明:数列{an+2}是等比数列.并求数列{an}的通项公式an
(2)若数列{bn}满足bn=log2(an+2),设Tn是数列{
bn
an+2
}
的前n项和.求证:Tn
3
2
答案

证明:(1)由Sn+2n=2an得 Sn=2an-2n

当n∈N*时,Sn=2an-2n,①

当n=1 时,S1=2a1-2,则a1=2,

则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).②

①-②,得an=2an-2an-1-2,

即an=2an-1+2,

∴an+2=2(an-1+2)

an+2
an-1+2
=2,

∴{an+2}是以a1+2为首项,以2为公比的等比数列.

∴an+2=4•2n-1

∴an=2n+1-2.

(2)证明:由bn=log2(an+2)=log22n+1=n+1,

bn
an+2
=
n+1
2n+1

Tn=

2
22
+
3
23
+…+
n+1
2n+1
,③

1
2
Tn=
2
23
 +
3
24
+…+
n
2n+1
+
n+1
2n+2
  ④

③-④,得

1
2
Tn=
2
22
+
1
23
+
1
24
+…+
1
2n+1
-
n+1
2n+2

=

1
4
+
1
4
(1-
1
2 n
)
1-
1
2
-
n+1
2n+2

=

1
4
+
1
2
-
1
2 n+1
-
n+1
2n+2

=

3
4
-
n+3
2n+2

所以 Tn=

3
2
-
n+3
2n+1
3
2

判断题
单项选择题