问题
解答题
已知数列{an}的前n项和为Sn,满足Sn+2n=2an (1)证明:数列{an+2}是等比数列.并求数列{an}的通项公式an; (2)若数列{bn}满足bn=log2(an+2),设Tn是数列{
|
答案
证明:(1)由Sn+2n=2an得 Sn=2an-2n
当n∈N*时,Sn=2an-2n,①
当n=1 时,S1=2a1-2,则a1=2,
则当n≥2,n∈N*时,Sn-1=2an-1-2(n-1).②
①-②,得an=2an-2an-1-2,
即an=2an-1+2,
∴an+2=2(an-1+2)
∴
=2,an+2 an-1+2
∴{an+2}是以a1+2为首项,以2为公比的等比数列.
∴an+2=4•2n-1,
∴an=2n+1-2.
(2)证明:由bn=log2(an+2)=log22n+1=n+1,
得
=bn an+2
,n+1 2n+1
则Tn=
+2 22
+…+3 23
,③n+1 2n+1
Tn=1 2
+2 23
+…+3 24
+n 2n+1
④n+1 2n+2
③-④,得
Tn=1 2
+2 22
+1 23
+…+1 24
-1 2n+1 n+1 2n+2
=
+1 4
-
(1-1 4
)1 2 n 1- 1 2 n+1 2n+2
=
+1 4
-1 2
-1 2 n+1 n+1 2n+2
=
-3 4
,n+3 2n+2
所以 Tn=
-3 2
<n+3 2n+1
.3 2