问题
解答题
已知函数y=ax2+bx+c(a≠0)图象上有两点A1(m1,y1),A2(m2,y2),满足a2+(y1+y2)a+y1•y2=0.
求证:
(1)存在i∈{1,2},使yi=-a;
(2)抛物线y=ax2+bx+c与x轴总有两个不同的交点;
(3)若使该图象与x轴交点为(x1,0)(x2,0),(x1<x2),则存在i∈{1,2},使x1<mi<x2.
答案
证明:(1)由a2+(y1+y2)a+y1y2=0,
有(y1+a)(y2+a)=0.(2分)
∴y1=-a或y2=-a,
即存在i∈{1,2},使得yi=-a.(4分)
(2)由(1)知存在i∈{1,2},使得yi=-a,
则有-a=ax2+bx+c,
即ax2+bx+a+c=0,
由△=b2-4a(a+c)≥0.
∴b2-4ac≥4a2>0.∴b2-4ac>0.
∴抛物线y=ax2+bx+c与x轴总有两个不同的交点.(8分)
(3)方程ax2+bx+c=0有两个实数根x1、x2,x1+x2=-
,x1x2=b a
.(10分)c a
∴(mi-x1)(mi-x2)
=mi2-(x1+x2)mi+x1x2
=mi2+
mi+b a c a
=
(ami2+bmi+c)1 a
=
yi,1 a
由(1)可知
yi=-1<0,1 a
∴x1<mi<x2.(14分).