问题
解答题
已知向量
(1)求
(2)求证|
(3)求函数f(x)=
|
答案
(1)∵
•a
=sinx•cosx+sinx•cosx=2sinx•cosx=sin2x (2′)b
∵x∈[0,
],π 2
∴2x∈[0,π]
∴
•a
∈[0,1](4′)b
(2)证明:∵
+a
=(cos+sinx,sinx+cosx)b
∴|
+a
|=b
(6')2(cosx+sinx)2
=
=2|sin(x+2[
sin(x+2
)]2π 4
)|π 4
∵x∈[0,
],π 2
∴x+
∈[π 4
,π 4
],3π 4
∴sin(x+
)>0,π 4
∴2|sin(x+
)|=2sin(x+π 4
),π 4
∴|
+a
|=2sin(x+b
).(8')π 4
(3)∵x∈[0,
],π 2
∴x+
∈[π 4
,π 4
]3π 4
∴f(x)=
•a
-b
|2
+a
|b
=sin2x-2
sin(x+2
)π 4
=2sinxcosx-2(sinx+cosx)(9')
解法1:令t=sinx+cosx
∴sinx•cosx=
(1≤t≤t2-1 2
)2
∴y=t2-1-2t(10')
=(t-1)2-2
∴y∈[-2,1-2
](12')2
解法2:f(x)=sin2x-2
sin(x+2
)(9')π 4
=-cos[2(x+
)]-2π 4
sin(x+2
)π 4
=2sin2(x+
)-2π 4
sin(x+2
)-1(10')π 4
∵
≤sin(x+2 2
)≤1π 4
∴f(x)∈[-2,1-2
](12')2