问题 解答题
已知向量
a
=(cosx,sinx),
b
=(sinx,cosx)
,且x∈[0,
π
2
]

(1)求
a
b
的取值范围;
(2)求证|
a
+
b
|=2sin(x+
π
4
)

(3)求函数f(x)=
a
b
-
2
|
a
+
b
|
的取值范围.
答案

(1)∵

a
b
=sinx•cosx+sinx•cosx=2sinx•cosx=sin2x  (2′)

∵x∈[0,

π
2
],

∴2x∈[0,π]

a
b
∈[0,1](4′)

(2)证明:∵

a
+
b
=(cos+sinx,sinx+cosx)

∴|

a
+
b
|=
2(cosx+sinx)2
(6')

=

2[
2
sin(x+
π
4
)]
2
=2|sin(x+
π
4
)|

∵x∈[0,

π
2
],

∴x+

π
4
∈[
π
4
4
],

∴sin(x+

π
4
)>0,

2|sin(x+

π
4
)|=2sin(x+
π
4
),

∴|

a
+
b
|=2sin(x+
π
4
).(8')

(3)∵x∈[0,

π
2
],

∴x+

π
4
∈[
π
4
4
]

∴f(x)=

a
b
-
2
|
a
+
b
|

=sin2x-2

2
sin(x+
π
4
)

=2sinxcosx-2(sinx+cosx)(9')

解法1:令t=sinx+cosx

sinx•cosx=

t2-1
2
   (1≤t≤
2

∴y=t2-1-2t(10')

=(t-1)2-2

∴y∈[-2,1-2

2
](12')

解法2:f(x)=sin2x-2

2
sin(x+
π
4
)(9')

=-cos[2(x+

π
4
)]-2
2
sin(x+
π
4
)

=2sin2(x+

π
4
)-2
2
sin(x+
π
4
)-1(10')

2
2
≤sin(x+
π
4
)≤1

∴f(x)∈[-2,1-2

2
](12')

选择题
单项选择题