问题
解答题
已知点H(0,-3),点P在x轴上,点Q在y轴正半轴上,点M在直线PQ上,且满足
(1)当点P在x轴上移动时,求动点M的轨迹曲线C的方程; (2)过定点A(a,b)的直线与曲线C相交于两点S R,求证:抛物线S R两点处的切线的交点B恒在一条直线上. |
答案
(1)设P(a,0),Q(0,b)则:
•HP
=(a,3)(a,-b)=a2-3b=0PQ
∴a2=3b
设M(x,y)∵
=-PM 3 2 HQ
∴x=
=-2a,y=a 1- 3 2
=3b∴y=-
b3 2 1- 3 2
x21 4
(2)设A(a,b),S(x1,
x12),R(x2,1 4
x22),(x1≠x2)1 4
则直线SR的方程为:y-
x12=1 4
(x-x1),即4y=(x1+x2)x-x1x2
x22-1 4
x12 1 4 x2-x1
∵A点在SR上,
∴4b=(x1+x2)a-x1x2①
对y=
x2求导得:y′=1 4
x1 2
∴抛物线上SR处的切线方程为
y-
x12=1 4
x1(x-x1)即4y=2x1x-x12②1 2
y-
x22=1 4
x2(x-x2)即4y=2x2x-x22③1 2
联立②③得x= x1+x2 2 y=
x1 x21 4
代入①得:ax-2y-2b=0故:B点在直线ax-2y-2b=0上