问题 解答题
已知点H(0,-3),点P在x轴上,点Q在y轴正半轴上,点M在直线PQ上,且满足
HP
PM
=0,
PM
=-
3
2
MQ

(1)当点P在x轴上移动时,求动点M的轨迹曲线C的方程;
(2)过定点A(a,b)的直线与曲线C相交于两点S R,求证:抛物线S R两点处的切线的交点B恒在一条直线上.
答案

(1)设P(a,0),Q(0,b)则:

HP
PQ
=(a,3)(a,-b)=a2-3b=0

∴a2=3b

设M(x,y)∵

PM
=-
3
2
HQ

∴x=

a
1-
3
2
=-2a,y=
-
3
2
b
1-
3
2
=3b∴y=
1
4
x2

(2)设A(a,b),S(x1

1
4
x12),R(x2
1
4
x22),(x1≠x2

则直线SR的方程为:y-

1
4
x12=
1
4
x22-
1
4
x12 
x2-x1
(x-x1),即4y=(x1+x2)x-x1x2

∵A点在SR上,

∴4b=(x1+x2)a-x1x2

对y=

1
4
x2求导得:y′=
1
2
x

∴抛物线上SR处的切线方程为

y-

1
4
x12=
1
2
x1(x-x1)即4y=2x1x-x12

y-

1
4
x22=
1
2
x2(x-x2)即4y=2x2x-x22

联立②③得

x=
x1+x2
2
y=
1
4
x1 x2

代入①得:ax-2y-2b=0故:B点在直线ax-2y-2b=0上

问答题 简答题
填空题