问题
填空题
(文)已知椭圆
|
答案
设过点A的直线与椭圆相交于两点,E(x1,y1),F(x2,y2),
则有
+x12 16
=1①,y12 4
+x22 16
=1②,y22 4
①-②式可得:
+(x1-x2)(x1+x2) 16
=0,(y1-y2)(y1+y2) 4
又点A为弦EF的中点,且A(1,1),∴x1+x2=2,y1+y2=2,
即得kEF=
=-y1-y2 x1-x2
=-4(x1+x2) 16(y1+y2)
=-4×2 16×2
,1 4
∴过点A且被该点平分的弦所在直线的方程是y-1=-
(x-1),即x+4y-5=0.1 4
故答案为:x+4y-5=0