问题 选择题

已知⊙O的半径为2,直线l上有一点P满足OP=2,则直线l与⊙O的位置关系是(  )

A.相切

B.相离

C.相切或相离

D.相切或相交

答案

答案:D

题目分析:根据直线与圆的位置关系来判定.判断直线和圆的位置关系:①直线l和⊙O相交⇔d<r;②直线l和⊙O相切⇔d=r;③直线l和⊙O相离⇔d>r.分OP垂直于直线l,OP不垂直直线l两种情况讨论.解:当OP垂直于直线l时,即圆心O到直线l的距离d=2=r,⊙O与l相切;当OP不垂直于直线l时,即圆心O到直线l的距离d<2=r,⊙O与直线l相交.故直线l与⊙O的位置关系是相切或相交.故答案为:相切或相交

点评:此类试题属于综合性试题,考查直线与圆的位置关系.解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定

单项选择题
单项选择题