问题 解答题
(1)已知数列{an}的各项均为正数,前n项和为Sn,若Sn=
1
4
(an+1)2
①求{an}的通项公式;
②设m,k,p∈N*,m+p=2k,求证:
1
Sm
+
1
Sp
2
Sk

(2)若{an}是等差数列,前n项和为Tn,求证:对任意n∈N*,Tn,Tn+1,Tn+2不能构成等比数列.
答案

(1)①由Sn=

1
4
(an+1)2,可得Sn+1=
1
4
(an+1+1)2

两式相减得an+1=

1
4
(an+1-an)(an+1+an+2),

化为(an+1+an)(an+1-an-2)=0.

∵an>0,∴an+1-an-2=0,即an+1-an=2.

∴数列{an}是公差为2的等差数列.

a1=S1=

1
4
(a1+1)2,化为(a1-1)2=0,解得a1=1.

∴an=1+(n-1)×2=2n-1.

②由①知Sn=

n(1+2n-1)
2
=n2

1
Sm
+
1
Sp
-
2
Sk
=
1
m2
+
1
p2
-
2
k2
=
k2(m2+p2)-2m2p2
m2p2k2

又∵m,k,p∈N*,m+p=2k,∴k=

m+p
2

1
Sm
+
1
Sp
-
2
Sk
=
(
m+p
2
)2(m2+p2)-2m2p2
m2p2k2
(
mp
)2(2mp)-2m2p2
m2p2k2
=0,

1
Sm
+
1
Sp
2
Sk
成立.

(2)由{an}是等差数列,设公差为d,

假设存在m∈N*Tm ,Tm+1,Tm+2构成等比数列.即

T2m+1
=TmTm+2

(Tm+am+1)2=Tm(Tm+am+1+am+2)

化为dTm=

a2m+1
,即
a21
+
mda1+
1
2
m(m+1)d2=0
(*)

若d=0,则a1=0,∴Tm=Tm+1=Tm+2=0,这与Tm ,Tm+1,Tm+2构成等比数列矛盾.

若d≠0,要使(*)式中的首项a1存在,必须△≥0,

然而△=m2d2-2m(m+1)d2=-(m2+2m)d2<0,矛盾.

综上所述,对任意n∈N*,Tn,Tn+1,Tn+2不能构成等比数列.

单项选择题
多项选择题