正方形ABCD的顶点A,C在抛物线y2=4x上,一条对角线BD在直线x+2y-4=0上,求此正方形的边长.
∵AC⊥BD
∴AC斜率是2
设直线方程为y=2x+b
代入抛物线方程得4x2+4bx+b2=4x
即4x2+(4b-4)x+b2=0
∴x1+x2=-
=1-b4b-4 4
∵y=2x+b
∴y1+y2=2x1+b+2x2+b=2(1-b)+2b=2
∵AC中点(
,x1+x2 2
)在BD上y1+y2 2
∴1=-
•1 2
+21-b 2
∴b=-3
代入4x2+(4b-4)x+b2=0
得4x2-16x+9=0
∴x1+x2=4,x1x2=9 4
∴(x1-x2)2=(x1+x2)2-4x1x2=7
(y1-y2)2=[2(x1-x2)]2=28
∴AC=
=7+28 35
∴AB=
=AC 2 70 2