问题 填空题
在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,已知抛物线C的极坐标方程为ρcos2θ=4sinθ(ρ≥0),直线l的参数方程为
x=
3
t
y=1+t
(t为参数),设直线l与抛物线C的两交点为A、B,点F为抛物线C的焦点,则|AF|+|BF|=______.
答案

抛物线C的极坐标方程为ρcos2θ=4sinθ(ρ≥0),即 x2=4y,焦点(0,1),准线方程y=-1.

直线l的参数方程

x=
3
t
y=1+t
(t为参数),即 x-
3
y+
3
=0,

把直线方程代入抛物线C的方程可得 3y2-10y+3=0,∴y1+y2=

10
3

由抛物线的定义可得|AF|+|BF|=( y1+1)+(y2+1)=

16
3

故答案为

16
3

选择题
判断题