问题 解答题
设定义在区间[x1,x2]上的函数y=f(x)的图象为C,点A、B的坐标分别为(x1,f(x1)),(x2f(x2))且M(x,f(x))为图象C上的任意一点,O为坐标原点,当实数λ满足x=λx1+(1-λ)x2时,记向量
ON
OA
+(1-λ)
OB
.若|
MN
|≤k
恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准k下线性近似,其中k是一个确定的正数.
(Ⅰ)求证:A、B、N三点共线
(Ⅱ)设函数f(x)=x2在区间[0,1]上可的标准k下线性近似,求k的取值范围;
(Ⅲ)求证:函数g(x)=lnx在区间(em,em+1)(m∈R)上可在标准k=
1
8
下线性近似.
(参考数据:e=2.718,ln(e-1)=0.541)
答案

(Ⅰ)由

ON
OA
+(1-λ)
OB
BN
BA
,∴A、B、N三点共线.

(Ⅱ)由x=λx1+(1-λ)x2

ON
OA
+(1-λ)
OB
,得 N 和M的横坐标相同.

对于区间[0,1]上的函数f(x)=x2 ,A(0,0)、B(1,1),则有 |

MN
|=x-x2=-(x-
1
2
)
2
-
1
4

|

MN
|∈[0,
1
4
].

再由|

MN
|≤k恒成立,可得 k≥
1
4
.故k的取值范围为[
1
4
,+∞).

(Ⅲ)对定义在区间(em,em+1)(m∈R)上的函数函数g(x)=lnx,A (em,m)、B(em+1,m+1).

AB的方程为y-m=

1
em+1-em
(x-em ),其中x∈[em,em+1].

令h(x)=lnx-m-

1
em+1-em
(x-em ),则h′(x)=
1
x
-
1
em+1-em

由于导数h′(x) 在x=em+1-em 处的符号左正右负,故函数h(x)  在x=em+1-em 处取得极大值,

再由x∈[em,em+1]时,极大值仅此一个,故此极大值是函数h(x)的最大值.

故函数h(x)的最大值为h(em+1-em)=ln(e-1)-

e-2
e-1
≈0.123<
1
8

|

MN
|=h(x) 当x∈[em,em+1]时,有|
MN
|≤
1
8
成立,故要证的结论成立.

单项选择题
单项选择题