问题
解答题
已知抛物线C:y2=4x,动直线l:y=k(x+1)与抛物线C交于A,B两点,O为原点. (1)求证:
(2)求满足
|
答案
由
得k2x2+(2k2-4)x+k2=0.y2=4x y=k(x+1)
由k≠0,且△>0,得-1<k<1,且k≠0.
设A(x1,y1),B(x2,y2),则x1+x2=
-2,x1x2=1.4 k2
(1)证明:
•OA
=x1x2+y1y2OB
=x1x2+k2(x1+1)(x2+1)
=(k2+1)x1x2+k2(x1+x2)+k2
=k2+1+k2(
-2)+k2=5,4 k2
∴
•OA
=5为常数.OB
(2)
=OM
+OA
=(x1+x2,y1+y2)=(OB
-2,4 k2
).4 k
设M(x,y),则
消去k得y2=4x+8.x=
-24 k2 y= 4 k
又∵x=
-2>2,故M的轨迹方程为y2=4x+8(x>2).4 k2