问题 解答题
已知抛物线C:y2=4x,动直线l:y=k(x+1)与抛物线C交于A,B两点,O为原点.
(1)求证:
OA
OB
是定值;
(2)求满足
OM
=
OA
+
OB
的点M的轨迹方程.
答案

y2=4x
y=k(x+1)
得k2x2+(2k2-4)x+k2=0.

由k≠0,且△>0,得-1<k<1,且k≠0.

设A(x1,y1),B(x2,y2),则x1+x2=

4
k2
-2,x1x2=1.

(1)证明:

OA
OB
=x1x2+y1y2

=x1x2+k2(x1+1)(x2+1)

=(k2+1)x1x2+k2(x1+x2)+k2

=k2+1+k2

4
k2
-2)+k2=5,

OA
OB
=5为常数.

(2)

OM
=
OA
+
OB
=(x1+x2,y1+y2)=(
4
k2
-2
4
k
).

设M(x,y),则

x=
4
k2
-2
y=
4
k
消去k得y2=4x+8.

又∵x=

4
k2
-2>2,故M的轨迹方程为y2=4x+8(x>2).

单项选择题
单项选择题