问题
解答题
(1)已知数列{an}的通项公式:an=
(2)记bn=
(3)(理)如果Cn+1=
自然数n,或者都满足C2n-1>
(文)若{bn}是满足(2)的数列,且{ (bn)
|
答案
(1)an=
=2+2 (3n-1)+4 3n-1
,4 3n-1
∴an-2=
≤4 3n-1
=2,则an≤4.4 31-1
即{an}的最大项的值为4.
(2)欲使{ (bn)
}成等比数列,只需{bn}成等比数列.1 3
∵bn=
=an+p an-2
•3n+2+p 4
,∴只需2-p 4
=0或2+p 4
=0即可.解得p=2或p=-2.2-p 4
(3)(理)p=2,Cn+1=
=1+Cn+2 Cn+1
,1 Cn+1
∵C1>-1,∴Cn>-1.又C1≠
,2
∴C2≠
, … , Cn≠2
.2
∵(C2n-
) (C2n-1-2
)=2
<0,(1-
) ( C2n-1-2
)2 C2n-1+1
∴C2n-1>
, C2n<2
;或C2n-1<2
, C2n>2
.2
(文)∵p=-2不合题意,∴p=2⇒bn=3n,
据题意,
≥2004⇒(-3)n+1≤-4019,nmin=8.-3 [ 1-(-3)n] 1-(-3)