已知数列{an}与{bn}满足bn+1an+bnan+1=(-2)n+1,bn=
(Ⅰ)求a2,a3的值 (Ⅱ)设cn=a2n+1-a2n-1,n∈N*,证明{cn}是等比数列 (Ⅲ)设Sn为{an}的前n项和,证明
|
(Ⅰ)由bn=
,(n∈N*)可得bn=3+(-1)n-1 2 2 n为奇数 1 n为偶数
又bn+1an+bnan+1=(-2)n+1,
当n=1时,a1+2a2=-1,可得由a1=2,a2=-
;3 2
当n=2时,2a2+a3=5可得a3=8;
(Ⅱ)证明:对任意n∈N*,
a2n-1+2a2n=-22n-1+1…①
2a2n+a2n+1=22n+1…②
②-①,得a2n+1-a2n-1=3×22n-1,即:cn=3×22n-1,于是
=4Cn+1 Cn
所以{cn}是等比数列.
(Ⅲ)证明:
a1=2,由(Ⅱ)知,当k∈N*且k≥2时,
a2k-1=a1+(a3-a1)+(a5-a3)+(a7-a5)+…+(a2k-1-a2k-3)
=2+3(2+23+25+…+22k-3)=2+3×
=22k-1,2(1-4k-1) 2=4
故对任意的k∈N*,a2k-1=22k-1.
由①得22k-1+2a2k=-22k-1+1,所以a2k=
-22k-1k∈N*,1 2
因此,S2k=(a1+a2)+(a3+a4)+…+(a2k-1+a2k) = k 2
于是,S2k-1=S2k-a2k=
+22k-1.k-1 2
故
+S2k-1 a2k-1
=S2k a2k
+
+22k-1k-1 2 22k-1
=k 2
-22k-1 1 2
+k-1+22k 22k-1 k 1-22k
=1-
-1 4k k 4k(4k-1)
所以,对任意的n∈N*,
+S1 a1
+…+S2 a2
+S2n-1 a2n-1
=(S2n a2n
+S1 a1
)+…+(S2 a2
+S2n-1 a2n-1
)S2n a2n
=(1-
-1 4
)+(1-1 12
-1 42
)+…+(1-2 42(42-1)
-1 4n
)n 4n(4n-1)
=n-(
+1 4
)-(1 12
+1 42
)-…-(2 42(42-1)
+1 4n
)n 4n(4n-1)
=n-(
+1 4
+1 12
+1 42
+…+2 42(42-1)
+1 4n
)n 4n(4n-1)
≤n-(
)=n-
(1-(1 4
)n)1 4 1- 1 4
(n∈N*)1 3