问题 解答题
已知数列{an}与{bn}满足bn+1an+bnan+1=(-2)n+1,bn=
3+(-1)n-1
2
,n∈N*,且a1=2.
(Ⅰ)求a2,a3的值
(Ⅱ)设cn=a2n+1-a2n-1,n∈N*,证明{cn}是等比数列
(Ⅲ)设Sn为{an}的前n项和,证明
S1
a1
+
S2
a2
+…+
S2n-1
a2n-1
+
S2n
a2n
≤n-
1
3
(n∈N*
答案

(Ⅰ)由bn=

3+(-1)n-1
2
,(n∈N*)可得bn=
2 n为奇数
1  n为偶数

又bn+1an+bnan+1=(-2)n+1,

当n=1时,a1+2a2=-1,可得由a1=2,a2=-

3
2

当n=2时,2a2+a3=5可得a3=8;

(Ⅱ)证明:对任意n∈N*

a2n-1+2a2n=-22n-1+1…①

2a2n+a2n+1=22n+1…②

②-①,得a2n+1-a2n-1=3×22n-1,即:cn=3×22n-1,于是

Cn+1
Cn
=4

所以{cn}是等比数列.

(Ⅲ)证明:

a1=2,由(Ⅱ)知,当k∈N*且k≥2时,

a2k-1=a1+(a3-a1)+(a5-a3)+(a7-a5)+…+(a2k-1-a2k-3

=2+3(2+23+25+…+22k-3)=2+3×

2(1-4k-1)
2=4
=22k-1

故对任意的k∈N*,a2k-1=22k-1

由①得22k-1+2a2k=-22k-1+1,所以a2k=

1
2
-22k-1k∈N*

因此,S2k=(a1+a2)+(a3+a4)+…+(a2k-1+a2k)  = 

k
2

于是,S2k-1=S2k-a2k=

k-1
2
+22k-1

S2k-1
a2k-1
+
S2k
a2k
=
k-1
2
+22k-1
22k-1
+
k
2
1
2
-22k-1 
=
k-1+22k
22k-1
+
k
1-22k 

=1-

1
4k
-
k
4k(4k-1)

所以,对任意的n∈N*

S1
a1
+
S2
a2
+…+
S2n-1
a2n-1
+
S2n
a2n
=(
S1
a1
+
S2
a2
)+…+(
S2n-1
a2n-1
+
S2n
a2n

=(1-

1
4
-
1
12
)+(1-
1
42
-
2
42(42-1)
)+…+(1-
1
4n
-
n
4n(4n-1)
)

=n-(

1
4
+
1
12
)-(
1
42
+
2
42(42-1)
)-…-(
1
4n
+
n
4n(4n-1)
)

=n-(

1
4
+
1
12
+
1
42
+
2
42(42-1)
+…+
1
4n
+
n
4n(4n-1)
)

≤n-(

1
4
(1-(
1
4
)
n
)
1-
1
4
)=n-
1
3
(n∈N*

单项选择题
单项选择题 A1/A2型题