问题
填空题
已知函数f(x)=|x2-2mx+n|,x∈R,下列结论:
①函数f(x)是偶函数;
②若f(0)=f(2)时,则函数f(x)的图象必关于直线x=1对称;
③若m2-n≤0,则函数f(x)在区间(-∞,m]上是减函数;
④函数f(x)有最小值|n-m2|.其中正确的序号是______.
答案
①∵函数f(x)=|x2-2mx+n|,f(-x)=|x2+2mx+n|,若m≠0,显然f(-x)≠f(x),故①错误;
②函数f(x)=|x2-2mx+n|,x∈R,对称轴为x=m,若f(0)=f(2),可得|n|=|4-4m+n|,解不出m=1,故②错误;
③∵m2-n≤0,可得△=(-2m)2-4n=4m2-4n=4(m2-n)≤0,f(x)的图象开口向上,函数图象在x轴上方,
∴f(x)=|x2-2mx+n|=x2-2mx+n,对称轴为x=m,开口向上,
∴函数f(x)在区间(-∞,m]上是减函数,故③正确;
④函数f(x)≥0,说明其最小值为0,但是|n-m2|不一定等于0,故④错误,
故答案为:③;