问题
解答题
已知函数f(x)=ax2-4x-1.
(Ⅰ)若a=2时,求当x∈[0,3]时,函数f(x)的值域;
(Ⅱ)若a=2,当x∈(0,1)时,f(1-m)-f(2m-1)<0恒成立,求m的取值范围;
(Ⅲ)若a为非负数,且函数f(x)是区间[0,3]上的单调函数,求a的取值范围.
答案
(Ⅰ)当a=2时,函数f(x)=2x2-4x-1=2(x-1)2-3.
所以f(x)在[0,1]上单调递减;在(1,3]上单调递增.…(2分)
所以f(x)的最小值是f(1)=-3.…(3分)
又因为f(0)=-1,f(3)=5,所以f(x)的值域是[-3,5]. …(4分)
(Ⅱ)因为a=2,所以由(Ⅰ)可知:f(x)在[0,1]上单调递减.
因为当x∈(0,1)时,f(1-m)-f(2m-1)<0恒成立,可得
,…(7分) 解得 1-m>2m-1 0<1-m<1 0<2m-1<1
<m<1 2
.2 3
所以m的取值范围是(
,1 2
). …(8分)2 3
(Ⅲ)因为f(x)=ax2-4x-1,
①当a=0时,f(x)=-4x-1,所以f(x)在[0 3]上单调递减.…(10分)
②当a>0时,f(x)=a(x-
)2-2 a
-1,4 a
因为f(x)在[0 3]上的单调函数,可得
,解得 0<a≤
≤0 ,或2 a
≥32 a a>0
. …(13分)2 3
由①、②可知,a的取值范围是[0
]. …(14分)2 3