问题
解答题
已知数列{an}中,a1=3,an+1=2an-1(n≥1). (Ⅰ)设bn=an-1(n=1,2,3,…),求证:数列{bn}是等比数列; (Ⅱ)设cn=
|
答案
证明:(Ⅰ)∵an+1=2an-1,∴an+1-1=2(an-1)
∵bn=an-1,∴bn+1=2bn,
∵a1=3,∴b1=a1-1=2≠0,∴数列{bn}是等比数列
(Ⅱ)由(Ⅰ)bn=2n,∴an=2n+1
∴cn=
=2n an•an+1
-1 2n+1 1 2n+1+1
∴Tn=(
-1 3
)+(1 5
-1 5
)+…+(1 9
-1 2n+1
)=1 2n+1+1
-1 3
<1 2n+1+1 1 3