问题 解答题

已知函数f(x)=4x2-mx+5在(-∞,-2]上是减函数,在[-2,+∞)上是增函数.

(1)求实数m的值;

(2)求函数f(x)当x∈[0,1]时的函数值的集合.

答案

(1)、函数f(x)=4x2-mx+5的对称轴为x=

m
8
,又因为函数f(x)=4x2-mx+5在(-∞,-2]上是减函数,在[-2,+∞)上是增函数.

所以

m
8
=-2,即m=-16.

(2)、由(1)得f(x)=4x2+16x+5,由f(x)在[-2,+∞)上是增函数,可得:f(x)在[0,1]上是增函数,

所以f(x)的最小值为f(0)=5,f(x)的最大值为f(1)=25,所以函数f(x)当x∈[0,1]时的函数值的集合为{x|5≤x≤25}.

填空题
选择题