若点P(2,-1)平分椭圆
|
设弦的两个端点为A(x1,y1),B(x2,y2),
由A,B在椭圆上,得
+x12 12
=1 ①y12 8
+x22 12
=1②y22 8
①-②得:
=-(x1-x2)(x1+x2) 12
.(y1-y2)(y1+y2) 8
即
=-y1-y2 x1-x2
.8(x1+x2) 12(y1+y2)
∵点P(2,-1)平分AB,∴x1+x2=4,y1+y2=-2.
∴
=y1-y2 x1-x2
,即直线AB的斜率为4 3
.4 3
∴弦AB所在的直线方程为y+1=
(x-2),化为一般式得:4x-3y-11=0.4 3
故答案为:4x-3y-11=0.